
©Alistair Cockburn 2024, all right reserved 1

What is a port? What is the difference between an interface and a port?

Guy Atkinson interviewing Alistair Cockburn, XTC London, May 21, 2024

(Audio recording on YouTube:
https://www.youtube.com/watch?v=x6H2n_R
AZoA

There you go. And we can close. Yeah, yeah,
that's okay. No, no, that's

So my problem is that people draw hexagons
everywhere. Hexagons don't exist in the code.
They're not real. People draw lines. Lines
don't exist in the code. They're not real.

So what I'm battling against is people just
literally drawing hexagons everywhere and
said I did it. And I go, no you didn't. And then
I have to ask, of course, why, how do I know
you didn't do it? What is it you didn't do?

Well, the first thing is they don't put tests
there. If you don't have tests, you have no
protection. So, a hexagon is really what we
learned recently.

It's a component. In the UML sense, it's a
component. Like, if you get a chip from a
catalog, right, what are the characteristics of a
chip from a catalog? It's got input pins, it's got
output pins. You, the user, don't get to choose
what the output pins output. And by the way,
they test it in the factory.

So the two characteristics are, the chip owns
the interface, and they have tests. So when I
look at a piece of code and they say, they
draw the line, I have to see that the thing
owns the interface, and they have tests.
Well now we get to the question, what is, this
was the question, what is the difference
between merely an interface and a port?

G: Which is a special kind of interface.

Which is something, an interface plus
something. And the reason, the background is,
that this colleague of mine, I have high
respect for him, drew an architectural picture,
wrote a blog entry, and he had where I would
put the hexagon next to the technology, the
real technology boundary. And he drew it
inside. At the bounded context in DDD terms.

G: So inside the component?

Inside what I would call the component. He
declared that the bounded context was a
component. Or it was a hexagon. He said it's a
hexagon. Hexagons have no meaning, but
that's what he said. So the test question I
asked him, I said, well, I foresee a problem
that you have to write tests around your
hexagon, and you also have to write tests
actually at the technology boundary. You've
got a team of people, I can't imagine they're
going to maintain all of those tests.

And he said, no, they only maintain them at
the technology boundary.

And I said, your inner thing is not a hexagon,
in the sense I mean it. It's not a component. It
doesn't have tests.

It doesn't. It's nice, but the line doesn't mean
anything.

So then I had to face up to the question, if I
look at code, how do I know if it is or it isn't?
And so the test question,

G: Is or isn't?

Doesn't or doesn't implement the Ports and
Adapter architecture, to use the long words
very correctly. Right? Okay. Is or isn't a
hexagon, loosely speaking, but really

©Alistair Cockburn 2024, all right reserved 2

implements the Ports and Adapter
architecture. Right. That means it has to have
Ports.

So now we're at the how many angels dance
on the head of a pin question. That I was
asking those people, what is the difference
between an interface, merely an interface, and
a port?

G: Which is also an interface.

Which is an interface plus something. What's
the plus of So that was the test question I gave
them, because I have to face it, it's a great
question.

Nobody knows it because it's not a question
that gets asked. Right? So I don't even have
the perfect answer, like I'm noodling toward
it.

But the present, but I used a chip analogy.
Now there's two characteristics.

The chip manufacturer owns the interface. So
if we look at, Java turns out to be perfect for
expressing this, and we have a package
diagram or something. In an ordinary, kind of
a system, you have a component, I'll use the,
the glass as the component, right? And, and,
and, and this is a boundary.
And the other thing on the outside, declares
an interface. And the writers of this wine
glass,

G: This is the component, it's the That's the
component, it's the wine glass.

The writers of this component of this wine
glass, have to code to the interface of the wine
bottle. Of the external thing. That's normal,
right? If you get a database, if you get a
database, you have to code to the interface the
database provider told you.

G: Oh, okay. So we modify Because the
database existed first.

Exactly. It came from the catalog. You can't
change it. It's there.

G: Oh, okay.

Doesn't matter. HTTP, database, file system.
Yeah. Anything, right? Yeah. You bring in a
thing, it owns its interface. Yeah. You have to
modify your code to meet that interface. This
thing has an interface. That, that, the code.
Calls it makes out are the outgoing interface.
But these people have to meet the
requirements of the, what's called provided
interface of the, the thing on the outside.

G: So maybe SQL, for example.

For exactly, exactly. What's different, in order
to make it like a chip, this thing has to own its
own own interface.

G: The caller.

Yep. The caller, the wine glass in this case.
Mhm. Declares the, the verbs that we'll use to
call out.

G: Right. This is the subset of SQL I'm going
to use.

I'm not even going to use SQL. I'm going to
speak in my own language.
I don't know if SQL is there or not. There
might be no SQL. There might be a flat file.
There might be a human. There might be a
UI.

G: I do whatever I want here.

I do. It's, it's very godlike. It's very haughty. I
mean, it's really, really egotistical. Could be,
yeah. It says I will only talk to the rest of the
world. In this way, if you want to deal with
me, you must honor my language.

G: Yes.

©Alistair Cockburn 2024, all right reserved 3

Right? That's important. That's the part of the
port, like a chip. Right? So you make a
component, like it could be in a component
catalog.

G: Can I clarify the recording? We've got two
components. One is the call of the wine glass,
and the other is the standard thing from the
library, which is, um, a chip, or the wine
bottle, and, which could be a chip.
06:40 or a SQL database.

And now, guess what? Because each of these
has declared it owns the vocabulary. Yes. And
they're different.

G: Yes. Now I did not understand that back
then.

So guess what? You have to put an adapter
between them.

G: Adapter, right.

That's where the adapter comes from.

G: Gotcha.

This thing, your system, declared I will only
speak in my terms, which is a domain driven
term. There's no reference to technology. I, I
will say what I want.

G: Business and domain driven.

And somebody, you have to integrate it with
somebody else's thing where they did the
same thing.
And so you need to write.

G: From a technology point of view, right.

Right, and so you have to write a translator,
an adapter. Right? So the thing is, if, if, now
let's go to a Java packaging diagram or a Java
whatever diagram.

G: So more strongly typed.

Yep. Because Ruby, it's so soft, you know,
this discussion almost can't exist, right? It
almost doesn't exist in Ruby because there's
no declarations of anything, right? But
anyway, for Java, so normally, we would
have the technology thing, the external thing,
and we'd have that it declares an interface,
and we'd have that this uses, with a dashed
line, uses that interface.

G: The dashed line being without the adapter.

Without, what, what does Whatever, yes, it
will, it will, the programmers here will adjust
their code to meet whatever the external thing
said, like SQL being an effective example,
right?

Where was I going to go with this, one
second, one second, let me just catch up.

Now what we're going to do, is we're going to
say, move that interface, this interface We're
going to move the interface definition inside
the component, inside our thing, right?

So this thing now declares an interface. And
UML calls that a required interface. Provided
interface is the normal calling interface that
we're used to.

G: Such as the SQL one.

Yep, yep. And provided is, in Ruby you can't
even see it. It doesn't exist, right? It's just, we
just make calls.

G: You could have a comment or something.

Yeah, yeah, yeah. But you wouldn't see it.
You wouldn't see it. But in Java, in Java, you
literally can say, this is the interface I'm going
to use. They're the interface.

G: Right.

©Alistair Cockburn 2024, all right reserved 4

And then the user's relationship is internal to
our little thingy.

G: Right.

And now, we have this thing, and they do this
little vertical arrow, right, with the big
triangle head there.
This implements that interface. This thing,
well in this case, excuse me, our adapter.
Adapter, okay. Implements this interface.

G: The required interface.

The required interface. Yes. And uses the
provided interface of the, of the comp, I'll say
SQL just to make it sound better.

G: The of the SQL, right?

That's why we have to have an adapter. Yes.
But notice that our thing owns that interface.

G: The left-hand side of the interface.

Owns the, owns the declar, the definition of
the interface. And anything that wants to talk
to us has to do and implements that. So when
you look at the package dependency, right?
The external thing has a package dependency
on our component. Yes.

Whereas if I didn't have the adapter and we
were doing it the other way,
(recording ends)

